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While historically the discrete dipole approximation (DDA) implied the interaction of point di-
poles, integration of the corresponding free-space Green’s tensor (IGT) over the cuboid voxel is 
known to improve the performance of the method. Previous implementations used either slow 
numerical integration or some approximations with poorly controlled errors. We present the 
analytical IGT over arbitrary cuboid voxel, neglecting only the terms of fourth order of 𝑘𝑘𝑘𝑘 (voxel 
size parameter), and implement it in the open-source code ADDA. This implementation is much 
faster than numerical integration, while guaranteeing excellent accuracy for any input parameters. 
The improved IGT formulation leads to quadratic convergence in terms of 𝑘𝑘𝑘𝑘 for cubes and 
allows robust simulation of interaction of internal sources with particles of arbitrary shapes. 

INTRODUCTION 

The discrete dipole approximation (DDA) is a general method to simulate light scattering by 
particles of arbitrary shape and internal structure [1]. While the method is commonly associated 
with a physically clear picture of interacting point dipoles, there exist modern DDA formula-
tions departing from this picture. One of such formulations is the integration of Green’s tensor 
(IGT) [2], which naturally follows from the rigorous derivation of the DDA through the dis-
cretization of the volume integral equation [1]. Apart from being more mathematically justified, 
the IGT is known to solve the convergence problems of the standard (point-dipole) DDA for 
high-contrast dielectric nanoparticles (large real refractive index 𝑚𝑚) [3,4]. Moreover, the IGT 
is critical for the successful usage of rectangular-cuboid discretization voxels [3], and should 
lead to quadratic convergence (in terms of voxel size 𝑘𝑘) for shapes exactly described by a set 
of cubes [5]. 

As follows from its name, IGT incurs integration over the voxel (generally, a cuboid). This 
can be done numerically but can take considerable computational time due to oscillating nature 
of the integrand. That is not a bid deal for volume-integral codes based on matrix inversion, 
such as pyGDM [6], but may take a large fraction of the total simulation time for conventional 
DDA codes, based on the FFT-accelerated iterative solution. In particular, IGT with numerical 
evaluation of integrals has been implemented in the ADDA code long ago [7], but its use was 
mostly accompanied by some approximations. Either the IGT was used only for two points 
closer than a certain threshold (say, 3𝑘𝑘) or an approximation was used based on tabulated 
values of auxiliary integrals (only for cubical voxels) [8]. Both these options have favorable 
convergence of the iterative solver, but the remaining error due to the used approximations is 
poorly known. While the latter is sufficiently small for a wide majority of practical applications, 
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it hampers sensitive convergence studies, e.g., for numerical tests of the abovementioned quad-
ratic convergence. The same problem applies to the fully-numerical IGT as well, since it uses 
a built-in threshold. 

While fully analytic integration of the Green’s tensor does not seems feasible, in this work 
we perform such integration keeping the error 𝒪𝒪[(𝑘𝑘𝑘𝑘)4], where 𝑘𝑘 is the wavenumber. This is 
sufficient for all purposes, since the error of the DDA itself (using any formulation) is 
𝒪𝒪[(𝑘𝑘𝑘𝑘)2] or larger [5]. We further implement the developed formulae in the ADDA code and 
numerically verify the quadratic convergence with respect to 𝑘𝑘. Finally, we discuss other po-
tential applications of the IGT. 

INTEGRATION OF THE STATIC PART 

The free-space Green’s tensor is given as: 
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where 𝐫𝐫 is generally a distance between two points, 𝑘𝑘 = |𝐫𝐫|, and 𝐫𝐫 ⊗ 𝐫𝐫 is a dyad defined as: 
(𝐫𝐫 ⊗ 𝐫𝐫)𝜇𝜇𝜇𝜇 = 𝐫𝐫𝜇𝜇𝐫𝐫𝜇𝜇 (µ and ν  – are Cartesian components of the tensor or vector), �̄�𝐈 is an 
identity matrix, and exp(−i𝜔𝜔𝜔𝜔) time dependence of harmonic fields is assumed. The static 
limit is given as 
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The direct consequence of the aimed order of errors is that we need to perform integra-
tion exactly for small scatterer, which requires analytic integration of 𝐆𝐆�st(𝐫𝐫). Fortunately, this 
can be accomplished using the third antiderivative (can be verified by differentiation): 
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where 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 are the Cartesian components of 𝐫𝐫, 𝑉𝑉𝐫𝐫 ≝ 𝑥𝑥𝑦𝑦𝑧𝑧 (can be negative, but assumed to 
be non-zero), and artanh 𝑥𝑥 = (1 2⁄ ) ln[(1 + 𝑥𝑥) (1 − 𝑥𝑥)⁄ ] is the inverse hyperbolic tangent. 
Thus, the integral of 𝐆𝐆�st(𝐫𝐫) over any cuboid (aligned with the coordinate axes) is proportional 
to a triple difference of values of 𝐅𝐅�(𝐫𝐫) at its vertices. This is valid even for cuboids enclosing 
the origin, if the corresponding singular integral is considered as a surface one (so-called L-
term). 
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INTEGRATION OF THE DYNAMIC PART 

To proceed beyond the static limit, we continue the expansion of 𝐆𝐆�(𝐫𝐫) in series of 𝑘𝑘𝑘𝑘, by 
introducing (see, e.g., Eq. (A3) of [9]): 

𝐀𝐀�(𝐫𝐫) ≝ 4𝜋𝜋𝑘𝑘2[𝐆𝐆�(𝐫𝐫) − 𝐆𝐆�st(𝐫𝐫) − 𝐆𝐆�1(𝐫𝐫)] =  
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Importantly, the series for 𝐆𝐆�(𝐫𝐫) have infinite radius of convergence (due to exponents), and, 
hence, can be differentiated term-wise. Similarly to Eq. (3), there exist an analytic third anti-
derivative of 𝐆𝐆�1(𝐫𝐫): 
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(6) 

The final component is the integration of 𝐀𝐀�(𝐫𝐫), which is performed using its regularity at 
the origin, in contrast to extracted 𝐆𝐆�1(𝐫𝐫) and 𝐆𝐆�st(𝐫𝐫). A straightforward Taylor expansion leads 
to 
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where 𝑉𝑉d is the cuboid voxel (dipole) centered at 𝐫𝐫, while the last equality (“cub”) is for a 
cubical one. The obtained remaining error is sufficient (𝒪𝒪[(𝑘𝑘𝑘𝑘)4]) for 𝑘𝑘 ≳ 𝑘𝑘, while omitting 
𝒰𝒰[𝑓𝑓(𝐫𝐫)] leads to the same order of errors for smaller 𝑘𝑘.  

Moreover, the above evaluation is redundantly complicated for 𝑘𝑘𝑘𝑘 ≳ 1 and may even 
lose significant digits due to the cancellation of some terms. In this case, the best option is to 
apply Taylor-expansion based formula [Eq. (7)] directly to 𝐆𝐆�(𝐫𝐫), which has already been used 
in ADDA [8]. However, the specific optimal thresholds of 𝑘𝑘 to switch between the described 
evaluation algorithms still need to be determined. 

SIMULATION RESULTS 

We have implemented the above formulae in ADDA and performed convergence studies for 
cubes with 𝑚𝑚 = 1.6 + 0.01i, 0.1 + i, 10 + 10i and two sizes 𝑘𝑘𝑘𝑘 = 8 and 0.1 (comparable to 
and much smaller than the wavelength. The same cubes were considered in [10,11], where the 
reference values for efficiencies were obtained through the simulation with 𝑛𝑛𝑥𝑥 (number of 
voxels along the cube edge) up to 512. We compared the extinction and absorption efficiencies 
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(𝑄𝑄ext and 𝑄𝑄abs), computed with the analytic IGT and 𝑛𝑛𝑥𝑥 up to 128, with this reference. The 
relative errors (REs) for a single case (𝑚𝑚 = 1.6 + 0.01i, 𝑘𝑘𝑘𝑘 = 8), are shown in Fig. 1. It features 
close-to-quadratic convergence in contrast to the linear one, observed previously for point-
dipole formulations of the DDA [10]. The results for other cases and with larger 𝑛𝑛𝑥𝑥 will be 
shown at the conference. 

 
Fig. 1. Relative errors of 𝑄𝑄ext and 𝑄𝑄abs, computed with the IGT, versus the discretization parameter 
(in log-log scale) for a cube with 𝑘𝑘𝑘𝑘 = 8 and 𝑚𝑚 = 1.6 + 0.01i. Also shown are the linear fits 

through the points with 𝑘𝑘𝑘𝑘|𝑚𝑚| ≤ 0.5. 

Another relatively novel application of the DDA is when the incident field is generated 
by a point source placed inside the particle, which is relevant, e.g., for near-field radiative heat 
transfer [12]. If such source is naively used in the point-dipole DDA, the result is highly sensi-
tive to its position with respect to the voxel lattice [13]. By contrast, the IGT is free of these 
deficiencies, if the incident field is computed not in the center, but averaged over the voxel. 
The corresponding results will be presented at the conference. 

CONCLUSION 

We have implemented the analytical integration of 𝐆𝐆�(𝐫𝐫) over arbitrary cuboid voxel neglecting 
the terms of order 𝒪𝒪[(𝑘𝑘𝑘𝑘)4]. This accelerates the IGT formulation of the DDA and makes it 
applicable in all scenarios. It is already available in the master branch of ADDA 
at https://github.com/adda-team/adda, and will further be incorporated into the stable re-
lease. The improved IGT formulation leads to quadratic convergence in terms of 𝑘𝑘𝑘𝑘 for cubes, 
which is expected to hold for any cubically shaped scatterers as well. Also, the IGT allows 
robust simulation of interaction of internal sources with particles of arbitrary shape and com-
position. 
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